Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

نویسنده

  • B. Militzer
چکیده

Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the densitytemperature range of 0.387 – 5.35 g cm and 500 K – 1.28×10 K. One coherent equation of state (EOS) is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order derive the entropy, a thermodynamically consistent free energy fit is introduced that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in form of a table as well as a fit and is compared with chemical models. In addition, the structure of the fluid is analyzed using pair correlation functions. Shock Hugoniot curves are compared with recent laser shock wave experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlations in Hot Dense Helium

Hot dense helium is studied with first-principles computer simulations. By combining path integral Monte Carlo and density functional molecular dynamics, a large temperature and density interval ranging from 1000 to 1 000 000 K and 0.4 to 5.4 g cm becomes accessible to first-principles simulations and the changes in the structure of dense hot fluids can be investigated. The focus of this articl...

متن کامل

ar X iv : 0 90 2 . 42 81 v 1 [ co nd - m at . m tr l - sc i ] 2 5 Fe b 20 09 Correlations in Hot Dense Helium

Hot dense helium is studied with first-principles computer simulations. By combining path integral Monte Carlo and density functional molecular dynamics, a large temperature and density interval ranging from 1000 to 1 000 000 K and 0.4 to 5.4 g cm becomes accessible to first-principles simulations and the changes in the structure of dense hot fluids can be investigated. The focus of this articl...

متن کامل

First principles calculations of shock compressed fluid helium.

The properties of hot dense helium at megabar pressures are studied with two first principles computer simulation techniques: path integral Monte Carlo simulation and density functional molecular dynamics. The simulations predict that the compressibility of helium is substantially increased by electronic excitations that are present in the hot fluid at thermodynamic equilibrium. A maximum compr...

متن کامل

All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas.

We develop an all-electron path integral Monte Carlo method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend path integral Monte Carlo studies beyond hydrogen and helium to elements with core electrons. Path integral Monte Carlo results for pressures, internal energies, and pair-correlation functions compare well with density functional ...

متن کامل

Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm, Dense Neon

All-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) allow for a consistent first-principles investigation of hot, dense neon plasmas in the density-temperature range of 1–15 g cm−3 and 10–10 K. DFT-MD data at low temperatures combined with PIMC data at higher temperatures provides a coherent equation of state with a region of overlap in which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008